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Abstract—In this paper, we report on the state-of-the-art
power performance of InP-based HEMT’s at V-band. Power
HEMT’s were fabricated wsing two different material layer
structures. The power performances of these HEMT’s were
measured at 59 GHz. We were able to achieve an output power
of 155 mW with 4.9 dB gain, and power-added efficiency of 30
percent from a 448-pm-wide HEMT fabricated on a §-doped
channel layer structure. By using a double-doped layer struc-
ture, we were able to achieve an output power of 145 mW with
4.2 dB gain, and power-added efficiency of 24 percent. Output
power of 288 mW with 3.6 dB gain and power-added efficiency
of 20.4 percent were obtained by power combining two of the
6-doped channel HEMT’s. These combinations of output power
and efficiency are the best reported to date for InP-based
HEMT’s, and are comparable to the best results reported for
AlGaAs /InGaAs on GaAs pseudomorphic HEMT’s at this fre-
quency.

I. INTRODUCTION

NP-BASED HEMT’s have demonstratad record low-

noise performance at V-band [1], [2]. But little work
has been done on InP-based HEMT’s for power applica-
tions due to the low gate-to-drain breakdown voltage and
low Schottky barrier height of these HEMT’s. At V-band,
the highest output power previously reported for a single
AllnAs/GalnAs /InP HEMT has been 26 mW with
power-added efficiency of 33 percent [3]. So far, the most
promising results have been obtained on pseudomorphic
AlGaAs /InGaAs on GaAs HEMT’s [4]-[6]. InP-based
HEMT’s offer a number of advantages over GaAs-based
HEMT’s for power applications. The thermal conductiv-
ity of InP is 40 percent higher than GaAs, allowing a lower
operating channel temperature for the same power dissi-
pation. Due to the larger conduction band discontinuity
between Al 45Ing 5,As and Gag 471ng s53As, higher electron
densities can be achieved in AllnAs/GalnAs/InP
HEMT’s than in AlGaAs /InGaAs /GaAs HEMT’s. Cou-
pled with the higher electron velocity in the channel,
higher current densities can be achieved.

We previously reported that by proper device layer de-
sign, it is possible to overcome the drawbacks of InP-
based HEMT’s for power applications, and achieve power
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densities as high as 1 W /mm, and power-added efficien-
cies as high as 59 percent at 12 GHz [7]. In this paper,
we report on the power performance of 6-doped channel
and double-doped AllnAs /GalnAs on InP HEMT’s. Us-
ing these layer structures, we have achieved state-of-the-
art power performance at 59 GHz. The results are
comparable to the best reported performance for
AlGaAs /InGaAs on GaAs pseudomorphic HEMT’s at
this frequency.

II. DEVICE STRUCTURE

To achieve high current densities in power HEMT’s
without sacrificing the gate-to-drain breakdown voltage,
several possible material layer structures can be used. In
this study, we fabricated HEMT’s using two different
layer structures—a 0-doped channel layer structure and a
double-doped layer structure. In a 6-doped channel layer
structure (shown in Fig. 1), a plane of Si atoms is inserted
at the center of the channel. In a double-doped layer struc-
ture (shown in Fig. 2), the channel is undoped and an
additional donor layer is added below the channel. Both
of these layers were grown by MBE on a semi-insulating
InP substrate. The d-doped layer structure consisted of a
2500 A AllnAs buffer layer followed by 2 300 A GalnAs
channel. A plane of Si atoms, with a concentration of 1.5
X 10" cm™2, was inserted at the center of this channel.
In addition, a 50 Ao AlInAs layer doped 6 x 10" cm™3,
separated by a 15 A undoped AllnAs spacer layer, was
grown on top of the channel. To improve the Schottky
barrier height of the gate, and the gate-to-drain break-
down voltage, a 250 A undoped layer of Al ¢olng 40As
was then grown [8]. Finally, a 70 A doped layer of
GalnAs layer was grown to facilitate ohmic contact for-
mation. The material had an electron sheet charge density
of 4.2 x 10" ecm™? with a mobility of 8500 cm’®/V-s.
Even though doping the channel reduces the mobility of
the electrons in the channel, it is significantly higher than
the electron mobility of GaAs pseudomorphic HEMT’s.

The double-doped layer structure had a 4-doped layer
below the GalnAs channel with a concentration of 2.0 X
10'2 cm ™2 separated from the channel with a spacer layer
thickness of 50 A . The spacer layer was grown at signif-
icantly reduced temperatures (300-350°C) to prevent sil-
icon movement into the channel [9]. The GalnAs channel
was 200 A thick. An additional donor layer consisting of
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Gag 47Ing.53As CAP 70 A
Alg going.40As SCHOTTKY 250 A
Alg 4ging.52As SiDOPED 50 A
Alg 48Inp.52As SPACER 15A
Gag 47Ing.53As CHANNEL 150 A
e Si §-DOPED
Gag,47inp.53As CHANNEL 150 A | AYER
Alg_4glng 50As BUFFER 2500 A
InP SUBSTRATE
Fig. 1. Cross section of the §-doped channel AllnAs/GalnAs on InP power
HEMT.
Gag 47Ing.53As = CAP 70A
. ‘Alg_48Ing 52As SCHOTTKY 100 A
“Alg,60Inp.40As SCHOTTKY 200 A
Alg 4ging 50As SiDOPED 50 A
Alg 4gIng 50As SPACER 15A
Gag 47Ing.53As CHANNEL 200 A
Alp.4glng.52As SPACER  50A
————————————————————— Si 8-DOPED
V , LAYER
Alg 48Ing.50As BUFFER 2500 A
InP SUBSTRATE
Fig. 2. Cross section of the double-doped AllnAs/GalnAs on InP power
HEMT.

50 A of silicon doped layer (6.5 X 1018 cm™%) separated
by a 15 A ‘spacer layer was grown on top of the channel.
The Schottky layer consisted of 200 A of undoped
Alg goIng 40As - followed by 100 A of undoped
Alg 45Ing 5,As, and a 70 A Gag 4/Ing, s3As layer was used
as the cap. The double-doped layer structure had a sheet

charge density of 4.3 x 10'? cm ™2 with a mobility of 9800 .

cm’ /V-s. In both of these layer structures, electron sheet
charge density in the channel is increased w1thout increas-
ing the doping in the top donor layer, which would result
in the reduction of the gate-to-drain breakdown voltage.
HEMT’s were fabricated on these two layer structures
using a planar process. Source and drain ohmic contacts
were formed using AuGe/Ni/Au alloy with drain-to-
source spacing of 2 um. Boron ion implantation was used
for device isolation. The gates with a T-shaped cross sec-
tion were formed by Ti/Pt/Au metallization with a gate
length of 0.15 um on the 6-doped channel wafer (wafer
A) and a gate length of 0.2 pm on the double-doped wafer
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Flg 3. SEM of 0.15 pm X 448 um InP-based power HEMT.

(wafer B). The HEMT’s had a unit gate-finger width of
56 pm and a total gate width of 448 um with a gate-to-
gate spacing of 20 um. The picture of the device is shown
in Fig. 3. The completed wafers were thinned to a thick-
ness of 50 um, and source vias were etched using a wet-
etch process. The vias were approximately 75 ym in di-
ameter on the back of the wafer, and 25 pm in diameter
at the source pads. The back of the wafer was then met-
allized and plated with 8 um of gold to add support to the
wafer

"III. DEVICE PERFORMANCE

A plot of transconductance and drain current. versus
gate-to-source voltage for wafer A is shown in Fig. 4. The
device has a peak transconductance of 600 mS/mm at a
drain-to-source voitage of 1.5 V. It has a fuil channel cur-
rent of 660 mA /mm measured at a gate-to-source voltage.
of 0.4 V and I, of 550 mA/mm. The gate-to-drain
breakdown voltage measured at 1 mA /mm of gate current
was 7 V with a gate-to-drain turn-on voltage of 0.65 V.
The 448 um HEMT’s from wafer A had a current gain
cutoff frequency (fy) of 140 GHz at a V of 1.5 V. For
wafer B, the plot of transconductance and drain current is

-shown in Fig. 5. In this case, the device has a peak trans-

conductance of 700 mS /mm. The full channel current is
660 mA /mm with I, of 530 mA /mm. The gate-to-drain
breakdown voltage for wafer B was 6.5 V with a gate-to-
drain turn-on voltage of 0.75 V. The typical fr of 448-
pm-wide HEMT’s from wafer B was 120 GHz. Both of
these wafers had a transconductance of more than 300
mS /mm over a drain current range of approximately 35-
605 mA /mm. A summary of the dc characteristics of the
two wafers is shown in Table I.

To measure the performance of the power HEMT’s at
59 GHz, the devices from both wafers A and B were
mounted in RF test fixtures with finline waveguide-to-mi-
crostrip transitions. The waveguide fixtures had a total
loss of approximately 1.2 dB at 50 GHz, and the power
measurements were corrected for this loss. The power
characteristics of a 448-um-wide HEMT from wafer A is

shown in Fig. 6. The transistor was biased at a drain-to-

source voltage of 3.5 V. The device has a maximum
power-added efficiency of 30 percent, with an output
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TABLE 1
SUMMARY OF THE DC CHARACTERISTICS OF THE 8-DOPED CHANNEL AND THE DOUBLE-DOPED CHANNEL
PowerR HEMT’s
gm 1, Lygs Bng ng 8%] mech-off
Wafer Profile (mS /mm) (mA / mm) (mA /mm) \%)] (turn-on) V)
delta-doped 600 660 550 7 0.65 -1.2
double-doped 700 660 530 6.5 0.75 -1
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Fig. 4. Plot of transconductance and drain current as a function of gate- ‘ §
to-source bias at V,;, = 1.5 V for the §-doped channel wafer (wafer A). 15 £
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Fig. 5. Plot of transconductance and drain current as a function of gate-
to-source bias at V, = 1.5 V for the double-doped wafer (wafer B).

power of 155 mW and 4.9 dB gain. The transistor has a
linear gain of 8 dB and a saturated output power of more
than 180 mW with a 3 dB gain. The 448-um-wide HEMT
from wafer B was also biased at a drain-to-source voltage
of 3.5 V. The device had a maximum power-added effi-
ciency of 24 percent, with an output power of 145 mW
and 4.2 dB gain. The linear gain for this device was ap-
proximately 7 dB. Table I shows a summary of the power
performance of devices from these two wafers.

To achieve higher output powers at 59 GHz, branch-
line couplers fabricated on alumina substrates were used
to power combine two 448-um-wide HEMT’s from wafer
A. Fig. 7 shows the power characteristics of the two de-
vices combined. The discontinuity in the output power is
due to retuning of the amplifiers at that input power level.
The output power at the maximum power-added effi-
ciency of 20.4 percent is 288 mW with a gain of 3.6 dB.
The combiner has an output power of more than 320 mW

0 4 8 12 16 20

INPUT POWER (dBm)

Fig. 6. Power characteristics of a 448-um-wide 6-doped channel HEMT
at 59 GHz.

TABLE II
SUMMARY OF THE POWER PERFORMANCE OF THE §-DOPED CHANNEL AND THE
DouBLE-DorED CHANNEL POWER HEMT's

Power-Added

Output Power  Efficiency = Power Gain Linear Gain
Wafer (mW) (%) (dB) (dB)

delta-doped 155 30 4.9 8

double-doped 145 24 4.2 7
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Fig. 7. Power characteristics of power combined two 448-pm-wide
d-doped channel HEMT’s at 59 GHz.
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Fig. 8. Comparison of the-state-of-art power performance for HEMT’s at
about 60 GHz.

with power-added efficiency of 19 percent. A comparison
of state-of-the-art power performance for HEMT’s at 60
GHz is shown in Fig. 8. As can be seen from a compar-
ison of output power and power-added efficiency, the data
presented in this paper on AllnAs /GalnAs /InP HEMT’s
are comparable to the best results reported on AlGaAs/
InGaAs /GaAs PHEMTs.

IV. CoNcLusION

In this paper, we compared two possible layer struc-
tures for fabrication of V-band power HEMT’s and re-
ported the first V-band power results of a double-doped
AlInAs /GalnAs on InP HEMT. We were able to achieve
an output power of 155 mW with power-added efficiency
of 30 percent and 4.9 dB gain from a §-doped layer struc-
. ture, and an output power of 145 mW with 4.2 dB gain
and power-added efficiency of 24 percent from a double-
doped layer structure. The lower gain and efficiency of
the double-doped layer structure are believed to be due to
the slightly longer gate length of the devices from that
wafer. Using a gate length of 0.15 um with the double-
doped layer structure should increase the gain, and there-
fore the power-added efficiency of the transistor. Re-
cently, we have demonstrated device yield of more than
90 percent for 50-um-wide low-noise InP-based HEMT’s
with gate length of 0.1 pum [10]. By further optimization
of the material layer structure, and by incorporating a 0.1
pm gate in our power HEMT’s, we expect improvements
in V-band power performance of the transistors.
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